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� There was a negative bubble in oil prices in 2014/15.

� This bubble decreased oil prices beyond the level justified by economic fundamentals.
� Several bubble detection methods confirm this evidence.
a r t i c l e i n f o

Article history:
Received 6 November 2015
Received in revised form
6 June 2016
Accepted 11 June 2016

JEL classification:
C15
C22
C51
C53
G17
O13
Q47

Keywords:
Oil
Wti
Brent
Generalized sup ADF test
LPPL
Bubble
x.doi.org/10.1016/j.enpol.2016.06.020
15/& 2016 Elsevier Ltd. All rights reserved.

ail addresses: fantazzini@mse-msu.ru, dean.fa
a b s t r a c t

This paper suggests that there was a negative bubble in oil prices in 2014/15, which decreased them
beyond the level justified by economic fundamentals. This proposition is corroborated by two sets of
bubble detection strategies: the first set consists of tests for financial bubbles, while the second set
consists of the log-periodic power law (LPPL) model for negative financial bubbles. Despite the metho-
dological differences between these detection methods, they provided the same outcome: the oil price
experienced a statistically significant negative financial bubble in the last months of 2014 and at the
beginning of 2015. These results also hold after several robustness checks which consider the effect of
conditional heteroskedasticity, model set-ups with additional restrictions, longer data samples, tests
with lower frequency data and with an alternative proxy variable to measure the fundamental value of
oil.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The Brent and WTI prices of crude oil fell by 60% between June
2014 and January 2015, marking one of the quickest and largest
declines in oil history. This fall in oil prices is large but it is not an
unprecedented event: the oil price fell more than 30% in a seven-
month sample already five times in the last three decades (1985–
1986, 1990–1991, 1997–1998, 2001, 2008). Of these five episodes,
the price slide in 1985–86 has some similarities with the fall in
2014/2015, because it followed a period of strong expansion of oil
supply from non-OPEC countries and Saudi-Arabia decided to in-
crease production and to stop defending prices. Several factors
ntazzini@gmail.com
have been proposed to explain this latest price crash: Arezki and
Blanchard (2014) suggested an important contribution of positive
oil supply shocks after June 2014. For example, there was a faster
than expected recovery of Libyan oil production due to a lull in the
local civil war, as it is visible from the EIA estimated historical
unplanned OPEC crude oil production outages:

Moreover, Iraq oil production was not affected by the civil war
enraging in the west and in the north of the country, as initially
feared. The success of US shale oil production (þ0.9 million b/d in
2014) and the OPEC decision in November 2014 to maintain its
production level of 30 mb/d, signalling a shift in the cartel's policy
from oil price targeting to maintaining market share, put addi-
tional pressure on oil prices.

Oil demand seems to have played a minor role compared to
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1 A detailed analysis of model specification sensitivity in right-tailed unit root
testing for explosive behavior was performed by Phillips et al. (2014).
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supply shocks: Arezki and Blanchard (2014) suggested that un-
expected lower demand between June and December 2014 could
account for only 20–35% of the price decline, while Hamilton
(2014) found that only two-fifths of the fall in oil prices was due to
weak global demand. Baumeister and Kilian (2016) used the re-
duced-form representation of the structural oil market model
developed in Kilian and Murphy (2014) and argued that, out of a
$49 fall in the Brent oil price, $11 of this decline was due to ad-
verse demand shocks in the first half of 2014, $ 16 to (positive) oil
supply shocks that occurred prior to July 2014, while the re-
maining part was due to a “shock to oil price expectations in July
2014 that lowered the demand for oil inventories and a shock to the
demand for oil associated with an unexpectedly weakening economy
in December 2014, which lowered the price of oil by an additional $9
and $13, respectively”.

These and other potential factors which could have influenced
the oil price decline are discussed in an extensive World Bank
policy research note by Baffes et al. (2015). Similarly to previous
works, they also found out that supply shocks roughly accounted
for twice as much as demand shocks in explaining the fall in oil
prices. An alternative explanation is put forward by Tokic (2015)
who suggested that the 2014 oil price collapse was partially an
irrational over-reaction to the falling Euro versus the dollar. This
seems to be consistent with a Bank of International Settlements
report (Domanski et al., 2015), which shows that production and
consumption alone are not sufficient for a fully satisfactory ex-
planation of the collapse in oil prices. In this regard, Domanski
et al. (2015) advanced the idea that “if financial constraints keep
production levels high and result in increased hedging of future
production, the addition to oil sales would magnify price declines. In
the extreme, a downward-sloping supply response of increased cur-
rent and future sales of oil could amplify the initial decline in the oil
price and force further deleveraging”.

Given this background, we want to propose a potential ex-
planation for the part of the oil price decline which can not be
explained using supply and demand alone, particularly in the last
months of 2014, as highlighted by Baumeister and Kilian (2016).
More specifically, we suggest that there was a negative financial
bubble which decreased oil prices beyond the level justified by
economic fundamentals. A negative financial bubble is a situation
where the increasing pessimism fuelled by short positions lead
investors to run away from the market, which spirals downwards
in a self-fulfilling process, see Yan et al. (2012) for a discussion.

We employ two approaches to corroborate this proposition:
the first approach consists of tests for financial bubbles proposed
by Phillips et al. (2016) (hereafter PSY) and Phillips and Shi (2014)
(hereafter PS). These tests are based on recursive and rolling right-
tailed Augmented Dickey-Fuller unit root test, wherein the null
hypothesis is of a unit root and the alternative is of a mildly ex-
plosive process. They can identify periods of statistically significant
explosive price behavior and date-stamp their occurrence. The
second approach consists of the log-periodic power law (LPPL)
model for negative financial bubbles developed by Yan et al.
(2012). This model adapts the Johansen-Ledoit-Sornette (JLS)
model of rational expectation bubbles developed by Sornette et al.
(1999); Johansen et al. (1999) and Johansen et al. (2000) to the
case of a price fall occurring during a transient negative bubble,
which they interpret as an effective random down payment that
rational agents accept to pay in the hope of profiting from the
expected occurrence of a possible rally. Despite the methodologi-
cal differences between these bubble detection methods, they
provide the same result: the oil price experienced a statistically
significant negative financial bubble in the last months of 2014
and at the beginning of 2015. A set of robustness checks finally
show that our results also hold with different tests, different
model set-ups and alternative datasets.
The paper is organized as follows: the bubble detection
methods are presented in Section 2, while the data employed in
the empirical analysis are discussed in Section 3. The main results
are described in Section 4, while robustness checks are reported in
Section 5. Conclusions and policy implications are presented in
Section 6.
2. Methods - testing for financial bubbles

We wanted to verify the presence of a negative financial bubble
in oil prices at the end of 2014 using a set of tests for financial
bubbles. We first employed the test by Phillips, Shi, and Yu (PSY,
2015) which builds on the previous work by Phillips, Wu, and Yu
(2011, hereafter PWY) and it is designed to identify periods of
statistically significant explosive price behavior. Strictly related to
this, we also employed the test by Phillips and Shi (PS, 2014) for
detecting a potential bubble implosion and estimating the date of
market recovery. We then used the log-periodic power law (LPPL)
model by Yan et al. (2012) which is specifically designed for ne-
gative financial bubbles. Differently from the approach by PSY and
PS, the LPPL model does not require the formation of a bubble as a
pre-requisite for a price crash.

2.1. Econometric tests for explosive behavior

The generalized-supremum ADF test (GSADF) proposed by
Phillips et al. (2015) builds upon the work by Phillips and Yu
(2011) and Phillips et al. (2011). This is a test procedure based on
ADF-type regressions using rolling estimation windows of differ-
ent size, which is able to consistently identify and date-stamp
multiple bubble episodes even in small sample sizes. It was re-
cently used by Caspi et al. (2015) to date stamp historical periods
of oil price explosivity using a sample of yearly data ranging be-
tween 1876 and 2014.

The first step is to consider an ADF regression for a rolling
sample, where the starting point is given by the fraction r1 of the
total number of observations, the ending point by the fraction r2,
while the window size by = −r r rw 2 1. The ADF regression is given
by
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is of a unit root ρ = 1 vs an alternative of a mildly explosive au-
toregressive coefficient ρ > 1.1 Then, PSY (2015) proposed a
backward sup ADF test where the endpoint is fixed at r2 and the
window size is expanded from an initial fraction r0 to r2. The test
statistic is then given by:
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We remark that the PWY (2011) procedure for bubble identifica-
tion is a special case of the backward sup ADF test where =r 01 , so
that the sup operation is superfluous.

The generalized sup ADF (GSADF) test is computed by re-
peatedly performing the BSADF test for each ∈ [ ]r r , 12 0 :
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PSY (2015, Theorem 1) provides the limiting distribution of (3)
under the null of a random walk with asymptotically negligible
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drift, while critical values are obtained by numerical simulation.
If the null hypothesis of no bubbles is rejected, it is then pos-

sible to date-stamp the starting and ending points of one (or more)
bubble(s) in a second step. More specifically, the starting point is
given by the date -denoted as Tre

- when the sequence of BSADF test
statistics crosses the critical value from below, whereas the ending
point -denoted as Trf

- when the BSADF sequence crosses the cor-
responding critical value from above:
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where βcvr
T

2 is the β( − )100 1 T % right-sided critical value of the
BSADF statistic based on ⌊ ⌋Tr2 observations, and ⌊·⌋ is the integer
function. βT was set to 5%. δ is a tuning parameter which de-
termines the minimum duration for a bubble: this value is set to
1 in PWY (2011), PSY (2015) and most of previous applied work,
thus implying a minimum bubble-duration condition of ( )Tlog
observations (i.e. a sample fraction of ( )T Tlog / ). In this regard,
Figuerola-Ferretti et al. (2015) reported results for weekly non-
ferrous metals prices with different choices of the tuning para-
meter δ = 1, 2, 4, and they found that while the imposition of
larger minimum length criterion eliminates some cases of mildly
exploding periods, the main results did not change.

Homm and Breitung (2012) compared several tests for detect-
ing financial bubbles and found that the PWY strategy has higher
power than the other procedures in detecting periodically col-
lapsing bubbles and in real time monitoring. However, Phillips
et al. (2016) showed that the PSY strategy outperforms the PWY
strategy in the presence of multiple bubbles.

Phillips et al. (2015) and Phillips et al. (2016) examined the
power of the previous test under alternative hypotheses where
bubbles collapse instantaneously. However, Yiu et al. (2013) and
Figuerola-Ferretti et al. (2015) suggest that the PSY procedure
might have some efficacy in detecting bubble implosion and
market crashes in general. Strictly speaking, the test proposed by
PSY (2015) is for explosive behavior, so that a situation of upward
explosive behavior can be interpreted as bubbles, while downward
explosive behavior can be interpreted as crashes or panic-selling.
In this regard, Phillips and Shi (2014) discussed alternative bubble
collapse models where the collapse can be “sudden”, “disturbing”
or “smooth”, and they proposed a reverse sample use of the PSY
test procedure for detecting crises and estimating the date of
market recovery. More specifically, they propose to use the BSDF
test to data *xt arranged in reverse order to the original series xt, so
that * = + −x xt T t1 , for = …t T1, 2, . The BSDF statistic for detecting a
bubble implosion/market crash is then defined as *( )BSDF gg 0 , where
the recursion (in reverse direction) initiates with a minimum
window size g0, and the test is repeatedly computed for each
fraction ∈ [ ]g g , 10 of *Xt . The market recovery date (fr) and the
crisis origination date (fc), both expressed in fractions of the ori-
ginal series sequence, are then computed as follows:
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T is the β( − )100 1 T % critical value of the *( )BSADF gg 0

statistic. Phillips and Shi (2014) pointed out that the slowly
varying function δ ( )T Tlog / in this case is not needed, given the
interest in identifying abrupt market crashes. Similarly to Eq. (3), a
generalized sup ADF test ( *( ))GSADF g0 can be computed by re-
peatedly performing the *( )BSADF gg 0 test for each ∈ [ ]g g , 10 . We
will also use this second test to verify the presence of a downward
market bubble in the oil price in 2014/2015.

2.2. Log-periodic power law (LPPL) models for negative financial
bubble detection

PSY (2015) and PS (2014) consider a model where asset prices
follow a random walk during normal periods, a mildly explosive
process during the bubble period, and then a bubble implosion
which can be abrupt -as in PSY (2015)- or modelled by a stationary
integrated process -as in PS (2014)-. Even though the PSY proce-
dure is formally to test for explosive behavior, which can be po-
sitive or negative, PSY (2015) focus only on upward trending
bubbles. Moreover, the model by PS(2014) requires the formation
of a bubble as a pre-requisite for the following price crash.
Therefore, we employed also the log-periodic power law (LPPL)
model by Yan et al. (2012) which is specifically designed for ne-
gative financial bubbles and does not require the formation of a
bubble as a pre-requisite for a price crash. This model is an ex-
tension of the LPPL model proposed by Sornette et al. (1999); Jo-
hansen et al. (1999) and Johansen et al. (2000), which posits the
presence of two types of agents in the market (traders with ra-
tional expectations and irrational “noise” traders with herding
behavior), and assumes that they are organized into networks and
can have only two states, buy or sell. Moreover, their trading be-
havior is influenced by the decisions of other traders and by ex-
ternal shocks. A bubble can then emerge when traders form
groups with self-similar behavior, which is regarded as a situation
of “order”, differently from the “disorder” which takes place during
normal market conditions, see Geraskin and Fantazzini (2013) for a
recent extensive review and Sornette (2003) for a discussion at the
textbook level. Several ex-ante forecasts of bubble episodes were
discussed by Zhou and Sornette (2003, 2006, 2008 and 2009);
Sornette and Zhou (2006); Sornette et al. (2009).

The expected value of the asset log price in a upward trending
bubble (before a crash) according to the LPPL equation is given by,

ω ϕ[ ( )] = + ( − ) + ( − ) [ ( − ) − ] ( )β βE p t A B t t C t t t tln cos ln 8c c c

where β quantifies the power law acceleration of prices, ω re-
presents the frequency of the price oscillations during the bubble,
tc is the so-called ‘critical time’ that corresponds to the end of the
bubble, while A, B, C and ϕ are simply units distributions of betas
and omegas and do not have any structural information, see
Sornette and Johansen (2001); Johansen (2003); Sornette (2003);
Geraskin and Fantazzini (2013) and Lin et al. (2014) for more
details.

The first major condition for a bubble to occur within the JLS
framework is β< <0 1, which guarantees that the crash hazard
rate accelerates. The second major condition is that the crash rate
should be non-negative, as highlighted by Bothmer and Meister
(2003), which imposes that

β β ω≡ − − | | + ≥b B C 0.2 2

Financial bubbles are defined in the LPPL model as transient re-
gimes of faster-than-exponential price growth resulting from po-
sitive feedbacks, and these regimes represent “positive bubbles”.
Positive feedbacks can also occur in a downward price regime with
faster-than-exponential downward acceleration: Yan et al. (2012)
refer to these regimes as “negative bubbles”. In the latter case, the
smaller the price, the larger is the decrease of future price.
Moreover, the increasing pessimism fuelled by short positions
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leads investors to run away from the market which falls down in a
self-fulfilling process. The JLS model can be easily modified to
accomodate for negative bubbles, requiring only that both the
expected excess return and the crash amplitude become negative,
see Yan et al. (2012) for details. It is possible to show that Eq. (8)
remains the same, with the inequalities > <B b0, 0 being the
opposite to those corresponding to a positive bubble, while the
first major condition β< <0 1 does not change.

The estimation of LPPL models can be rather difficult and sev-
eral algorithms were recently reviewed by Geraskin and Fantazzini
(2013). In this regard, Filimonov and Sornette (2013) proposed a
stable and robust calibration scheme of the log-periodic power law
model by rewriting the formula (8) as follows:

ω

ω

[ ( )] = + ( − ) + ( − ) [ ( − )]

+ ( − ) [ ( − )] ( )

β β

β

E p t A B t t C t t t t

C t t t t

ln cos ln

sin ln 9

c c c

c c

1

2

where ϕ=C Ccos1 , ϕ=C Csin2 , and which can be derived from (8) by
expanding the cosine term. Similarly to Filimonov and Sornette
(2013), we estimated (9) with nonlinear least-squares, but differ-
ently from them we employed a variant of the multi-stage pro-
cedure proposed in Geraskin and Fantazzini (2013) and Fantazzini
(2010) to improve the numerical convergence in small-to-medium
sized samples, see the Appendix Appendix A for details.
3. Data

3.1. Which oil price to use?

Some studies tried to identify speculative bubbles in the oil
market using the standard present-value model for stocks adapted
to commodity markets by Pindyck (1992). In this framework, the
fundamental value of oil is defined as the sum of discounted oil
dividends which are approximated by the convenience yield, see
Lammerding et al. (2013); Areal et al. (2013) and Shi and Arora
(2012)). Unfortunately, as shown -inter alia- by Figuerola-Ferretti
and Gonzalo (2010); Lammerding et al. (2013) and Figuerola-Fer-
retti et al. (2015), the estimated convenience yield can become
negative so that the ratio between the commodity price and the
measured convenience yield becomes uninterpretable and cannot
be used for testing bubbles, as done for equity prices by PWY
(2011). Moreover, in case of daily data, the estimates are rather
volatile and has to be smoothed. Given these issues, we preferred
to employ the previous tests with nominal oil prices, as done by
Gilbert (2010) and Homm and Breitung (2012) and with real oil
prices, as done by Caspi et al. (2015) and Phillips and Yu (2011). To
compute the daily real oil prices, we built a daily consumer price
index (CPI) series using the methodology used by the US and UK
governments for the indexation of Treasury Inflation-Protected
Securities (TIPS) and of Index-Linked Gilts, respectively.2 We
considered both nominal and real oil prices also due to the current
debate about which price series is better suited for analyzing the
relationship between the price of oil and the level of economic
activity (see the Macroeconomic Dynamics special issue on “Oil
Price Shocks” published in 2011 for a detailed discussion): we
decided to take a neutral stance on this issue and examined both
type of prices (Fig. 1).
2 Both the US and the UK governments calculate the daily CPI using a linear
interpolation between the CPI applicable to the first day of the month and the CPI
applicable to the first day of the following month. We used a cubic-spline inter-
polation because of the better mathematical properties. However, the differences
with linearly interpolated data were very small and did not change the outcome of
the tests.
3.2. Time sample for model estimation

We analyzed the daily nominal and real WTI and Brent oil
prices from January 2013 to April 2015. The nominal prices are the
spot prices as provided by the US Energy Information Adminis-
tration (EIA), while the real prices are computed using the US and
UK CPIs, using the methodology described in Section 3.1. We chose
this time span because we focus on the price crash at the end of
2014. Moreover, Sornette (2003) and Jiang et al. (2010) remarked
that a bubble cannot be diagnosed more than 1 year in advance, so
that a statistical test for detecting a bubble at the end of 2014 can
be computed using data starting from the year 2013 at the latest.
Furthermore, a recent literature examined the interaction between
market prices and media coverage and suggested that media hype
can be a potential source of speculation and financial bubbles, see
(among many) Shiller (2000, 2002), Dyck et al. (2003), Case and
Shiller (2003), Veldkamp (2006), Bhattacharya et al. (2009). In this
regard, Geraskin and Fantazzini (2013) suggested to use the Search
Volume Index (SVI) by Google Trends to get some insights as to
when a potential bubble may have started: this index computes
how many searches have been done for a term on Google over
time.3 If a keyword has both a large number of searches and
several potential meanings, Google Trends offers the possibility to
choose the SVI related to a specific topic, so that unrelated sear-
ches are filtered out: we report in Fig. 2 the SVIs for the topics
“West Texas Intermediate” and “Brent Crude”.

Fig. 2 shows that a large interest about these oil prices started
to build at the beginning of 2014, so that a time sample from
January 2013 to April 2015 seems appropriate. We will verify in
Section 5.3 whether our results continue to hold with longer
samples that start before 2013.
4. Results

4.1. Econometric tests for explosive behavior

Table 1 reports the GSADF and GSADF* statistics with the
95% critical values obtained by Monte Carlo simulation
using 1000 replications, with minimum estimation windows

= = +r g T0.01 1.8/0 0 , as suggested by PSY (2015). The start and
end dates for weakly explosive behavior as identified using the PSY
(2015) procedure, as well as the crisis origination date and market
recovery date as identified using the PS (2014) procedure are also
reported. The sequences of BSADF and BSADF* statistics (with 95%
critical values) for nominal and real oil prices are reported in
Figs. 3 and 4, respectively.

The GSADF tests identify a period of explosive behavior in Brent
prices between October 2014 and February 2015, whereas be-
tween December 2014 and March 2015 in WTI prices. There is also
a very short spike of the BSADF statistic in February 2014 asso-
ciated with a mild increase of the WTI price, but it seems more a
computationally anomaly rather than a period of explosive beha-
vior. In this regard, PS (2014) and PSY (2015) warned that the
BSADF statistic may exceed its critical value for a small number of
observations and give a false signal, so that they suggested to use a
minimum length criterion. The imposition of a minimum length
requirement of ( ) ≈Tlog 7 days does not change the results, but if
we consider a tuning parameter δ = 4 (i. e. 1 month), as suggested
by Figuerola-Ferretti et al. (2015), the mild exploding period in
February 2014 is eliminated. Instead, the GSADF* tests in Table 1
fail to identify significant period of market implosion for all oil
3 See https://support.google.com/trends for more details. The time
span starts from 2004, which is the first year available for this service.



Fig. 1. Estimated Historical Unplanned OPEC Crude Oil Production Outages (million barrels per day).
Source: EIA (2015).
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Fig. 2. Google Trends SVIs for “West Texas Intermediate” and “Brent Crude”.

Table 1.
GSADF statistics (upper part) and GSADF* statistics (lower part), 95% critical values,
start and end dates for explosive behavior (GSADF test), crisis origination date and
market recovery date (GSADF* test). * Significant at the 95% level.

Oil price GSADF c.v. Start (explosive beh.) End (explosive beh.)

Nominal Brent 4.59* 2.16 02.10.2014 27.02.2015
Nominal WTI 3.22* 2.10 08.12.2014 23.03.2015
Real Brent 4.52* 2.10 02.10.2014 27.02.2015
Real WTI 3.03* 2.16 08.12.2014 23.03.2015

Oil price GSADF* c.v. Crisis origination
date

Market recovery
date

Nominal Brent 1.52 2.29 / /
Nominal WTI 1.92 2.26 / /
Real Brent 1.51 2.28 / /
Real WTI 1.97 2.28 / /
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prices considered. In this regard, some insights are given by the
BSADF* statistics in the second row of Figs. 3 and 4, which show an
erratic behavior and are unable to cross the 95% critical values for
sustained periods of time and with high values. These latter results
may be due to the relatively short period of time considered for
estimation: we will see in Section 5.4 that longer estimation
samples make the oil price implosion at the end of 2014 strongly
significant.

4.2. LPPL model for negative financial bubble detection

Sornette et al. (2009); Jiang et al. (2010) and Geraskin
and Fantazzini (2013) suggested to use estimation samples of
varying size to deal with potential parameter instability.
Following their example, we fit the logarithm of the examined
oil price by using the LPPL Eq. (9) in shrinking windows and
in expanding windows. More specifically, for each end date

= …t 02/01/2014, , 30/04/20152 the starting date t1 ranged from
−t 1202 to −t 2502 in steps of one (trading) day. Following Jiang

et al. (2010) and Geraskin and Fantazzini (2013), we then used the
set of parameters estimated with all samples − = …t j j, 120, , 2502
to compute the moving 20%/80% and 5%/95% quantile range of the
parameters of interest. The 20%/80% and 5%/95% quantile ranges of
the LPPL parameters B and β for nominal and real oil prices are
reported in Figs. 5 and 6, respectively.

The crash hazard rate b was negative over all time sample (as
required by a negative bubble) and therefore was not reported. In
general, the LPPL parameters B and β satisfy jointly the conditions
for a negative financial bubble between October 2014 and March
2015 for the Brent and between December 2014 and March 2015
for the WTI. However, the evidence for the latter is somewhat
weaker. It is interesting to note that despite the methodological
differences between the LPPL approach and the econometric tests
by PSY (2015), they provide substantially the same result: oil pri-
ces experienced a statistically significant negative financial bubble
in the last months of 2014 and at the beginning of 2015.
5. Robustness checks

We wanted to verify that our previous results hold also with
different tests and alternative datasets. Therefore, we performed
the following robustness checks: a) we performed the FTS-GARCH
test for financial bubbles by Corsi and Sornette (2014) which takes
conditional heteroskedasticity into account; b) we employed the
‘volatility-confined’ LPPL model by Lin et al. (2014), which is a



-4
-2
0
2
4
6

40
60
80
100
120

I II III IV I II III IV I II
2013 2014 2015

BSADF (LHS) CV 95 % (LHS) BRENT (RHS)

-4
-2
0
2
4

40
60
80
100
120

I II III IV I II III IV I II
2013 2014 2015

BSADF (LHS) CV 95 % (LHS) WTI (RHS)

-2

-1

0

1

2

40

60

80

100

120

I II III IV I II III IV I II
2013 2014 2015

BSADF* (LHS) CV 95% (LHS) BRENT (RHS)

-2

-1

0

1

2

40

60

80

100

120

I II III IV I II III IV I II
2013 2014 2015

BSADF* (LHS) CV 95% (LHS) WTI (RHS)

Fig. 3. BSADF statistics (first row) and BSADF* statistics (second row) for date-stamping periods of explosive behavior and market implosions, respectively. Nominal oil prices:
Brent (first column) and WTI (second column).
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generalization of the previous LPPL model; c) we used an alter-
native longer daily data sample; d) we verified that our results
hold also with a weekly dataset. All checks confirmed that the oil
price experienced a statistically significant negative financial
bubble from the end of 2014 till the beginning of 2015.
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Fig. 4. BSADF statistics (first row) and BSADF* statistics (second row) for date-stamping
Brent (first column) and WTI (second column).
5.1. Accounting for heteroskedasticity: The FTS-GARCH test for fi-
nancial bubbles

Corsi and Sornette (2014) proposed a reduced form model for
the joint dynamics of liquidity and asset prices, where the self-
reinforcing feedback between credit creation and the market value
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periods of explosive behavior and market implosions, respectively. Real oil prices:
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Fig. 5. 20%/80% and 5%/95% quantile range of the LPPL parameters B (first row) and β (second row): shaded areas highlight the time samples when >B 0 and β< <0 1.
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4 The sequences start on the 2nd of January 2014, given the need to have a
minimum time sample for the estimation of the GARCH models.
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of the financial assets employed as collateral in the bank loans (i.e.
the financial accelerator) is modelled as a multivariate non-linear
stochastic process. They showed that such model can produce
explosive dynamics in the financial variables which can lead to a
market crash in finite time. Exploiting the implications of their
model for asset returns, they proposed an extension of the GARCH
process which can provide an early warning identification of fi-
nancial bubbles. More specifically, they showed that the positive
feedbacks of price on money and money on price leads to a finite
time singular (FTS) dynamics where these two variables follow a
self-reinforcing dynamics of the type ≃ δ+dX dt X/ 1 , with δ > 1, so
that the conditional mean of asset log-returns = ( ) − ( )−r P Pln lnt t t 1
depends on price levels Pt. The resulting FTS-GARCH model pro-
posed by Corsi and Sornette (2014) is given by:

μ γ ε ε σ= + + = ∼ ( ) ( )−r P z z N, , 0, 1 10t t t t t t t1

σ ω αε βσ= + + ( )− − 11t t t
2

1
2

1
2

where ω, α, β are positive parameters and the rejection of the null
hypothesis of γ = 0 is interpreted as evidence of a bubble. This test
is a type of right-tailed Dickey-Fuller test with GARCH errors: gi-
ven the moderate sample size, we employed bootstrap methods to
compute the test distribution, following the suggestion by Harvey
et al. (2016) who performed a comprehensive analysis of the im-
pact of different volatility structures on the size of the SADF test by
PWY (2011). The sequences of t-statistics of the FTS γ parameter
(with 95% critical values) for nominal and real oil prices are re-
ported in Fig. 74

The null hypothesis of γ = 0 is rejected between December
2014 and February 2015 for the Brent, similarly to previous tests,
whereas it is not rejected for the WTI. Therefore, the FTS-GARCH
approach seems to be more restrictive than the previous tests and
the evidence of a potential bubble is confirmed only for Brent oil
prices.

5.2. Diagnostic tests based on the LPPL fitting residuals

Lin et al. (2014) proposed a generalization of the LPPL model for
financial bubbles where the log-prices fluctuate around the LPPL
trajectory and the fitting residuals follow a mean-reverting Orn-
stein-Uhlenbeck process. The main advantage of the “volatility-
confined LPPL model” proposed by Lin et al. (2014) is to guarantee
the consistency of direct estimation with prices, which was not
possible with the original LPPL model due to the presence of a
random walk component with increasing variance.

Lin et al. (2014) used the Phillips-Perron (PP) and the Aug-
mented Dickey-Fuller (ADF) to test the stationarity of the LPPL
fitting residuals, whereas we used here the test by Kwiatkowski,
Phillips, Schmidt and Shin (Kwiatkowski et al., 1992), where the
null hypothesis is a stationary process. We employed the latter test
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Fig. 6. 20%/80% and 5%/95% quantile range of the LPPL parameters B (first row) and β (second row): shaded areas highlight the time samples when >B 0 and β< <0 1. Real
oil prices: Brent (first column) and WTI (second column).

5 The LPPL approach was not considered here because it is not intended for
detecting multiple bubbles over a long time span.
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because it has higher power when the underlying data-generating
process is an AR(1) process with a coefficient close to one, see
Geraskin and Fantazzini (2013). Substantially, the model by Lin
et al. (2014) adds an additional restriction to the original LPPL
model.

Following Geraskin and Fantazzini (2013) and Lin et al. (2014),
we first computed the fraction PLPPL of the previous estimation
windows [ − ]t j t;2 2 , = …j 120, , 250 that met the LPPL conditions
for a negative bubble. Then, we computed the conditional prob-
ability |PStat Res LPPL. . that, out of the fraction PLPPL of windows that
satisfied the LPPL conditions, the null hypothesis of stationarity
was not rejected for the residuals. The sequences of the prob-
abilities PLPPL and |PStat Res LPPL. . for nominal and real oil prices are
reported in Fig. 8.

The probabilities |PStat Res LPPL. . are almost always higher than 50%
and often close to 100%, thus confirming the previous evidence in
the baseline case. These results are similar to those reported by
Jiang et al. (2010), Geraskin and Fantazzini (2013) and Lin et al.
(2014).

5.3. Longer time sample

The estimation sample used in the baseline case range from
January 2013 till May 2015. We wanted to verify that our results
continue to hold with a longer sample. In this regard, we used the
range January 2005 - June 2015, which is the time span used by
Baffes et al. (2015) for their empirical analysis. Table 2 reports the
GSADF and GSADF* statistics with the 95% critical values, while the
sequences of BSADF and BSADF* statistics (with 95% critical values)
for nominal and real oil prices are reported in Figs. 9 and 10,
respectively.5 Similarly to the baseline case, we imposed a mini-
mum length requirement of · ( ) ≈T4 log 32 days.

The results in Table 2 and in Figs. 9 and 10 not only confirm
what we found in the baseline case, but also show that the evi-
dence of explosive behavior in oil prices is stronger for the sample
2014–2015 than for the 2008 oil crash. Moreover, differently from
the baseline case, the GSADF* tests are now significant at the 95%
level and the identified periods of significant market implosion are
June 2008-September 2008 and June 2014-November 2014. The
GSADF* test for the Brent real oil price is not significant at the 95%
level but only at the 90% level. In this regard, the BSADF* date-
stamping procedure seems to anticipate the real market recovery
date by a couple of months for both episodes of price declines
(2008 and 2014/15). We remark that a large body of the literature
examined the oil price crash in 2008 and the underlying factors to
the price build-up before this crash: see (among many), Sornette
et al. (2009); Khan (2009); Tokic (2010); Lombardi and Van Robays
(2011); Areal et al. (2013); Hamilton (2009, 2009, 2011) and Kilian
and Murphy (2014). Therefore, we refer the interested reader to
these references for more details. In general, this evidence
strengthens the case of a negative bubble in oil prices at the end of
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Fig. 7. T-statistics of the FTS parameter γ computed with an expanding window: Brent (first column) and WTI (second column). Nominal oil prices are in the first row, while
real price in the second row.
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2014 - beginning of 2015, which decreased the prices beyond the
level justified by economic fundamentals.

5.4. Tests with lower frequency data

The analysis has so far considered only daily data because we
could estimate the competing tests using the most recent
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Fig. 8. The fraction PLPPL of estimation windows that met the LPPL conditions (first row). T
satisfied the LPPL conditions, the null hypothesis of stationarity was not rejected for the
then =|P NAStat Res LPPL. . .
observations, an advantage highlighted by the World Bank in the
work by Baffes et al. (2015). However, for sake of generality, we
considered also a particular weekly dataset which could give ad-
ditional insights about the 2014/2015 oil price crash.

The US EIA has published weekly the total amount of crude oil
stocks in the US since January 1986. We used this data to compute
the weekly supply ratio, that is the ratio of the WTI nominal price
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he conditional probability |PStat Res LPPL. . that, out of the fraction PLPPL of windows that
residuals (second row). Brent (first column) and WTI (second column). If =P 0LPPL ,



Table 2.
GSADF statistics (upper part) and GSADF* statistics (lower part), 95% critical values,
start and end dates for explosive behavior (GSADF test), crisis origination date and
market recovery date (GSADF* test). * Significant at the 95% level.

Oil price GSADF (PSY-
2015)

c.v. Start (explosive
beh.)

End (explosive
beh.)

Nominal
Brent

4.59* 2.31 05.05.2008 21.07.2008

24.10.2008 31.12.2008
02.10.2014 14.04.2014

Nominal WTI 3.34* 2.34 05.05.2008 17.07.2008
31.10.2014 06.04.2015

Real Brent 4.54* 2.35 05.05.2008 15.07.2008
15.10.2008 31.12.2008
02.10.2014 14.04.2014

Real WTI 3.31* 2.38 05.05.2008 15.07.2008
31.10.2014 06.04.2015

Oil price GSADF*(PS-
2014)

c.v. Crisis origination
date

Market recovery
date

Nominal
Brent

2.45* 2.31 06.06.2008 15.09.2008

16.05.3014 26.11.2014

Nominal WTI 3.74* 2.34 03.06.2014 12.11.2014
Real Brent 2.29 2.40 / /
Real WTI 3.48* 2.38 09.06.2014 26.11.2014
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relative to the US inventory supply stock. This ratio was used by
Phillips and Yu (2011) and Caspi et al. (2015) as an alternative
proxy variable to measure the fundamental value of oil, using a
measure of the oil supply based on the inventory of crude oil in the
United States. Table 3 reports the GSADF statistic with the 95%
critical values, while the sequence of BSADF statistics (with 95%
critical values) for the supply ratio is reported in Fig. 116 . The
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Fig. 9. BSADF statistics (first row) and BSADF* statistics (second row) for date-stamping p
Brent (first column) and WTI (second column).
results for the weekly nominal WTI price as well as for the weekly
real WTI price are also reported for comparison purposes. The
latter price was computed with a methodology similar to that
described in section 3.1. Given the use of weekly data, we imposed
a minimum length requirement of ( ) ≈Tlog 7 weeks.

Table 3 and Fig. 11 provide some evidence of explosive behavior
in oil prices from the end of 1999 till March 2000: after reaching a
minimum close to 10 $ in December 1998, the WTI rose nearly
threefold by March 2000, as world petroleum consumption
strongly increased. This was followed by another decline in 2001,
following the DotCom bubble and the subsequent recession in the
US. However, while the sequences of BSADF statistics for the
supply ratio and the nominal WTI price agree on a potential
bubble at the beginning of 2000, this is not confirmed by the
BSADF statistics for the real WTI price, which is in line with the
evidence reported by Caspi et al. (2015) who did not find any price
explosivity for this time span using monthly data and the same
test procedure. Instead, all three GSADF tests show a period of
price explosivity between the end of 2007 and August/September
2008, a range close to those reported by Phillips and Yu (2011) and
Caspi et al. (2015) with monthly data. Finally, all three tests
identify a period of price explosivity between December 2014 and
March 2015, thus confirming our previous evidence. It is inter-
esting to note that the BSADF statistics for nominal and real WTI
prices reach a value of 2 or higher in the latter time span, whereas
they are much lower (but still significant) for the supply ratio. This
may be due to the strong build-up in US oil inventories since
January 2015 due to shale oil: the supply ratio is clearly more
sensitive to the oil excess supply, which is definitely one of the
main factors behind the price crash, as highlighted by Arezki and
Blanchard (2014); Baumeister and Kilian (2016) and Baffes et al.
(2015).

We also considered two monthly datasets: (1) the US refiners'
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eriods of explosive behavior and market implosions, respectively. Nominal oil prices:
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Fig. 10. BSADF statistics (first row) and BSADF* statistics (second row) for date-stamping periods of explosive behavior and market implosions, respectively. Real oil prices:
Brent (first column) and WTI (second column).

Table 3.
GSADF statistics, 95% critical values, start and end dates for explosive behavior
(GSADF test). * Significant at the 95% level.

Oil price GSADF (PSY-
2015)

c.v. Start (explosive
beh.)

End (explosive
beh.)

WTI Supply
ratio

4.54* 2.31 05.11.1999 17.03.2000

12.10.2007 19.09.2008
12.12.2014 13.03.2015

Nominal WTI 4.81* 2.31 14.01.2000 17.03.2000
07.09.2007 26.09.2008
28.11.2014 27.03.2015

Real WTI 3.66* 2.36 08.02.2008 22.08.2008
28.11.2014 27.03.2015
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acquisition cost for imported crude oil, as reported by the EIA,
extrapolated from 1974M1 back to 1973M1 as in Barsky and Kilian
(2002). Kilian and Murphy (2014) suggest to use this oil price since
it is a better proxy for the price of oil in global markets than the US
price of domestic crude oil, which was regulated during the 1970s
and early 1980s; (2) the monthly Brent oil prices as provided by
the IMF since January 1980. The GSADF tests were strongly sig-
nificant in both cases and identified a period of price explosivity
from November/December 2014 till February/March 2015, de-
pending on the type of oil price selected and whether nominal or
real prices are considered.7 However, the imposition of a mini-
mum bubble-duration length in this case would eliminate this
evidence, even considering the smallest length requirement pos-
sible of · ( ) ≈T1 log 6 months. Given that all previous results point
out to a (negative) bubble of 4/5 months, probably the tuning
6 The BSADF* statistic to test for significant bubble implosion was not con-
sidered because the initial minimum window size g0 on the reversed time series
eliminates the last year and half of data up to the beginning of 2014, so that it is not
useful for this analysis. Similarly to Section 5.3, the LPPL approach was also not
considered because it is not intended for detecting multiple bubbles over a long
time span.

7 Other periods of price explosivity were also detected, but are not of interest
for the current analysis.
parameter δ discussed above should be smaller than 1. However,
this technical issue goes beyond the scope of this paper and we
leave it as an avenue of further research. This is why we do not
report here the results with monthly data, but they are available
from the authors upon request.

5.5. The price fall in 2015/2016: preliminary evidence

At the time of finishing writing this work (May 2016), the oil
price experienced a new fall during the winter period in 2015/
2016. While a full analysis of this event will be discussed in a se-
parate work -due to the computational efforts needed and the lack
of data-, we nevertheless present some preliminary evidence
using the GSADF test and the LPPL model with the most recent
data of the real WTI oil price till April 2016.8 The GSADF and
GSADF* statistics and the sequences of BSADF and BSADF* statistics
(with 95% critical values) for the real WTI price are reported in
Fig. 12 (left column), while the 20%/80% and 5%/95% quantile
ranges of the LPPL parameters B and β are reported in Fig. 12 (right
column).

The results in Fig. 12 not only confirmed again the presence of a
negative bubble in oil prices at the end of 2014 - beginning of
2015, but the evidence in this case is even stronger than in the
baseline case. Interestingly, both the GSADF test and the LPPL
model did not find any significant evidence of a negative bubble
during the winter period in 2015/2016. However, the full analysis
of this event will be developed in a separate work.
6. Conclusions and policy implications

The aim of this paper is to propose a potential explanation for
the part of the oil price decline in 2014/15 which can not be ex-
plained using supply and demand alone. More specifically, we
suggest that there was a negative financial bubble which de-
creased oil prices beyond the level justified by economic
8 The author wants to thank an anonymous referee for pointing out this issue.



-4
-2
0
2
4
6

.0000

.0001

.0002

.0003

.0004

.0005

90 95 00 05 10 15

BSADF (LHS) CV 95% (LHS) SUPPLY RATIO (RHS)

-4
-2
0
2
4
6

0

40

80

120

160

90 95 00 05 10 15

BSADF (LHS) CV 95% (LHS) WTI (RHS)

-4

-2

0

2

4

0

40

80

120

160

90 95 00 05 10 15

BSADF (LHS) CV 95% (LHS) REAL WTI (RHS)
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fundamentals.
We employed two sets of bubble detection strategies to cor-

roborate this proposition: the first set consisted of tests for fi-
nancial bubbles proposed by Phillips et al. (2016) and Phillips and
Shi (2014). These tests are based on recursive and rolling right-
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time samples when >B 0 and β< <0 1.
tailed Augmented Dickey-Fuller unit root test, wherein the null
hypothesis is of a unit root and the alternative is of a mildly ex-
plosive process. They can identify periods of statistically significant
explosive price behavior and date-stamp their occurrence. The
second set consisted of the log-periodic power law (LPPL) model
-5.0
-2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0

II I III IV I II III IV I II
2014 2015 2016

B5% B20% B80% B95%

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

II I III IV I II III IV I II
2014 2015 2016

beta5% beta20%
beta80% beta95%

w), respectively. The GSADF statistic was equal to 3.31 ( = )CV 2.3995 , whereas the
arameters B (right-first row) and β (right-second row): shaded areas highlight the



D. Fantazzini / Energy Policy 96 (2016) 383–396 395
for negative financial bubbles developed by Yan et al. (2012). This
model adapts the Johansen-Ledoit-Sornette (JLS) model of rational
expectation bubbles developed by Sornette et al. (1999); Johansen
et al. (1999) and Johansen et al. (2000) to the case of a price fall
occurring during a transient negative bubble. Despite the metho-
dological differences between these bubble detection methods,
they provided the same result: the oil price experienced a statis-
tically significant negative financial bubble in the last months of
2014 and at the beginning of 2015.

A set of robustness checks showed that our results also hold
with different tests, model set-ups and alternative datasets: all
checks confirmed that the oil price experienced a statistically
significant negative financial bubble from the end of 2014 till the
beginning of 2015, thus supporting the idea put forward by Do-
manski et al. (2015) and Tokic (2015) that this price collapse
cannot be explained by supply and demand alone,

These results can be important for regulatory purposes, since it
is clear that the enhanced regulations imposed after the 2008 oil
bubble (see Collins (2010) and Cosgrove (2009)) cannot ensure the
oil price efficiency. In this regard, Tokic (2015) and Domanski et al.
(2015) suggested that the oil price collapse 2014/2015 could have
been caused by the increased leverage of oil firms (the debt of oil
and gas sector increased from $1 trillion in 2006 to $ 2.5 trillion in
2014): the increasing need to keep high production levels and to
hedge future production to satisfy financial constraints could have
easily amplified the initial price decline due to economic funda-
mentals. Therefore, a revised and more effective regulatory fra-
mework should include not only oil traders/speculators, but all
market participants including oil producers. The design of this
revised framework is definitively an important avenue of future
research.

Another implication of the evidence found in this work is that
market regulators should be concerned not only about positive
price bubbles, but also about negative bubbles. In this regard, it is
well known that the oil supply shows cyclical boom and bust cy-
cles in prices and production, see Maugeri (2010) for a large his-
torical review. Extremely low prices are not necessarily beneficial,
even for countries which are (mainly) oil consumers: for example,
Kilian (2008) showed that the large fall in investment in the oil
and gas industry following the oil price crash in 1985/1986 was
one of the main causes why real consumption in the US did not
grow as expected. In general, there is a large literature which tried
to find if and why economic activity responds asymmetrically to
oil price shocks -i.e. high oil prices decrease economic activity
much more than low oil prices stimulate it-, see the Macro-
economic Dynamics special issue on “Oil Price Shocks” published in
2011 for more details. Moreover, several authors have recently
investigated the linkages between the oil market and other mar-
kets, focusing particularly on the volatility transmission across fi-
nancial markets. Diebold and Yilmaz (2012) found that cross-
market volatility spillovers across US stock, bond, foreign exchange
and commodities markets were quite limited until 2007, but have
increased since then: particularly, they found that the commodity
market was a net recipient of small levels of volatility shocks from
the other markets till 2007, but it has become a net transmitter
after the beginning of the global financial crisis. Similar evidence
was found by Ji and Fan (2012) who found that the crude oil
market has significant volatility spillover effects on non-energy
commodity markets and they have strengthened after the crisis. A
similar result was also reported by Creti et al. (2013) who showed
increased links between stock and commodity markets, and by
Gomes and Chaibi (2014) who highlighted that shock and volatility
spillovers tend to go more often from oil to stock markets than
viceversa, see also Arouri and Nguyen (2010); Filis et al. (2011);
Kumar et al. (2012); Awartani and Maghyereh (2013) and Khal-
faoui et al. (2015). Given this increased influence of the oil market
on the other markets, regulators should consider a regulatory
framework able to mitigate an oil price crash due to panic selling
and/or market manipulation: a potential starting point could be
the model developed by Dutt and Harris (2005), which can be
used to set position limits for cash-settled derivative contracts.
Appendix A. Appendix

We estimated (9) with nonlinear least-squares, using a variant
of the 3-step procedure proposed in Geraskin and Fantazzini
(2013) and Fantazzini (2010):
1. Set = + ·( − )t t t t0.1c 2 2 1 , where t2 and t1 are the last and the first

observation of the estimation sample, respectively. Estimate the
remaining LPPL parameters β ω[ ]A B C C, , , , ,1 2 by using the BFGS
(Broyden, Fletcher, Goldfarb, Shanno) algorithm.

2. Keeping fixed the LPPL parameters Φ β ω^ = [ ^ ^ ^ ^ ^ ^]A B C C, , , , ,1 2 com-
puted in the first stage, estimate the critical time tc.

3. Use the estimated parameters in the first and second stages as
starting values for estimating all the LPPL parameters.

Similarly to Geraskin and Fantazzini (2013), we found that this
multi-step procedure improves considerably the numerical con-
vergence and the estimation efficiency in small-to-medium sized
samples.
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